Notes

Preparation and X-Ray Crystal Structure of [Ru₃RhH₃(CO)₁₂]*

Jouni Pursiainen and Tapani A. Pakkanen

University of Joensuu, Department of Chemistry, P.O. Box 111, SF-80101 Joensuu, Finland

The synthesis and X-ray crystal structure determination of a new ruthenium-rhodium mixed-metal cluster [Ru₃RhH₃(CO)₁₂] have been performed. The complex crystallises in the space group $P\bar{1}$ with a = 8.356(8), b = 9.261(8), c = 13.83(1) Å, $\alpha = 82.56(7)$, $\beta = 80.12(7)$, $\gamma = 68.83(7)^{\circ}$, and Z = 2. Its ¹H n.m.r. properties are also discussed.

Tetranuclear mixed-metal carbonyls of ruthenium, cobalt, and rhodium form an exceptionally well defined group of cluster compounds. Of the dodecacarbonyl clusters of the type $[Ru_x-Co_yRh_2H_x(CO)_{12}]$ (x + y + z = 4) only $[Ru_3RhH_3(CO)_{12}]$ is entirely unknown.¹ The compound $[CoRh_3(CO)_{12}]$ has been reported to be unstable.² The metal combination Ru_3Rh , however, is known from several clusters containing C_5H_5 or C_5Me_5 ligands.³⁻⁶

In this work the new parent cluster $[Ru_3RhH_3(CO)_{12}]$ has been prepared and characterised by X-ray crystallography and ¹H n.m.r. spectroscopy.

Results and Discussion

The crystal structure of $[Ru_3RhH_3(CO)_{12}]$, (1), is shown in the Figure. The structure is isomorphous with the cobalt and osmium analogues $[Ru_3CoH_3(CO)_{12}]$,⁷ $[Os_3CoH_3(CO)_{12}]$,⁸ and $[Os_3RhH_3(CO)_{12}]$.⁹ The atomic co-ordinates are presented in Table 1, bond lengths and selected bond angles in Table 2.

The hydrogen atoms were placed and refined isotropically in $Ru(\mu-H)Ru$ positions, which were indirectly evidenced as the hydride sites. These positions correspond to those observed in the cobalt and osmium analogues mentioned above. The metal-metal distances corresponding to the bridging hydrides (av. 293.0 pm) are clearly longer than the three others (av. 275.9 pm) and are of the size of hydride-bridged Ru–Ru bond lengths.¹

The carbonyls also bend away from these bridged Ru-Ru edges as a result of the steric demands of the hydrides. The *cis* Ru-Ru-C angles of the carbonyls 6, 7, and 11 are significantly larger (111.0—116.5, av. 113.9°) than for 4, 5, 8, 9, 10, and 12 (95.8—98.0, av. 96.9°). This supports the positions of the hydrides being opposite the metal assigned as rhodium in the Figure. Corresponding Rh-Ru-C and Ru-Rh-C angles of carbonyls *cis* to the Ru-Rh bonds are 89.7—93.4 (av. 91.4) and 95.0—99.2 (av. 97.1°), respectively.

Computer-simulated space filling models of the cluster were also used to locate the hydrides.¹⁰ The models showed 'holes' in the carbonyl coverage only in the three directions where the hydride ligands in the Figure are located.

The assignment of the metals is based on ¹H n.m.r. results. The only signal observed between 0 and -50 °C (at $\delta -17.3$) contains no evidence of couplings to the rhodium atom. This

Figure. The schematic representation and numbering scheme of $[Ru_3RhH_3(CO)_{12}]$. Hydrides H(12), H(13), and H(23) are numbered according to the ruthenium atoms they bridge

can be explained by three equivalent $\operatorname{Ru}(\mu-H)\operatorname{Ru}$ hydrides. The chemical shift is nearly the same as for the C_{3v} isomer of $[\operatorname{Ru}_3\operatorname{COH}_3(\operatorname{CO})_{12}]$.⁷ No evidence of isomerism was observed at these temperatures for compound (1). At 0 °C the signal, however, is broader than we have observed for the $\operatorname{Ru}(\mu-H)\operatorname{Ru}$ hydride in, for example, $[\operatorname{Ru}_2\operatorname{Rh}_2\operatorname{H}_2(\operatorname{CO})_{12}]$.¹¹ This might be due to a rapid hydride exchange between the different edges. The signal became slightly narrower at lower temperatures.

Experimental

The literature method was used to prepare $[Rh(CO)_4]^{-12}$. Other reagents were obtained from commercial sources. Reactions and manipulations were carried out under a dinitrogen atmosphere using standard Schlenk-tube techniques.

Infrared spectra were recorded on a Nicolet 20SXC FT-IR spectrometer.

Crystallography.—Crystal data. $C_{12}H_3O_{12}RhRu_3$, M = 745.26, triclinic, space group $P\overline{1}$, a = 8.356(8), b = 9.261(8), c = 13.83(1) Å, $\alpha = 82.56(7)$, $\beta = 80.12(7)$, $\gamma = 68.83(7)^\circ$, U = 980.75 Å³ (by least-squares refinement on diffractometer angles for 13 automatically centred reflections, $\lambda = 0.710$ 73 Å), Z = 2, $D_c = 2.52$ g cm⁻³, F(000) = 696, $\mu(Mo-K_{\alpha}) = 3.10$ mm⁻¹.

Data collection and processing. Nicolet R3m diffractometer,

^{* 1,1,1,2,2,2,3,3,3,4,4,4-}Dodecacarbonyl-2,3;2;4;3,4-tri-μ-hydridotetrahedro-1-rhodium-2,3,4-triruthenium.

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii—xx.

Atom	X	у	Ξ	Atom	X	У	Ζ
Rh	2 210(1)	2 112(1)	8 538(1)	C(1)	1 921(12)	113(10)	8 873(6)
Ru(1)	5 135(1)	1 210(1)	7 173(1)	C(2)	3 454(12)	2 066(10)	9 626(7)
Ru(2)	1 640(1)	2 433(1)	6 600(1)	C(3)	-67(12)	3 430(11)	9 110(6)
Ru(3)	2 989(1)	4 488(1)	7 374(1)	C(4)	5 276(12)	-912(10)	7 388(6)
O(1)	1 739(12)	-1.061(9)	9 092(5)	C(5)	6 610(12)	1 003(10)	8 137(7)
O(2)	4 141(10)	2 019(9)	10 268(5)	C(6)	6 967(12)	913(10)	6 085(7)
O(3)	-1344(10)	4 179(10)	9 489(6)	C(7)	1 491(12)	2 775(10)	5 204(7)
O(4)	5 375(11)	-2.181(8)	7 502(6)	C(8)	-747(12)	3 591(10)	6 981(7)
O(5)	7 539(10)	877(10)	8 678(5)	C(9)	1 275(11)	488(9)	6 768(6)
O(6)	8 090(10)	724(10)	5 450(5)	C(10)	4 087(13)	4 845(11)	8 373(6)
O(7)	1 354(13)	2 988(10)	4 393(5)	C(11)	3 797(12)	5 825(10)	6 362(7)
O(8)	-2178(9)	4 288(9)	7 186(6)	C(12)	830(12)	6 019(10)	7 810(7)
O(9)	1 042(10)	-659(8)	6 859(5)	H(12)	3 790(121)	1 439(103)	6 125(63)
O(10)	4 760(10)	5 083(9)	8 963(5)	H(23)	1 941(107)	4 130(93)	6 389(57)
O(11)	4 324(11)	6 549(9)	5 767(5)	H(13)	5 009(139)	3 182(116)	6 917(73)
O(12)	-473(10)	6 947(9)	8 052(6)				

Table 1. Atomic co-ordinates ($\times 10^4$) of compound (1)

Table 2. Bond lengths (pm) and angles (°)

Rh-Ru(1)	275.7(3)	Rh-Ru(2)	276.2(3)
Rh-Ru(3)	275.9(3)	Ru(1)-Ru(2)	293.4(3)
Ru(1)-Ru(3)	293.7(3)	Ru(2)-Ru(3)	292.1(3)
Rh-C(1)	194.0(10)	Rh-C(2)	195.9(11)
Rh-C(3)	194.5(8)	Ru(1)-C(4)	191.2(10)
Ru(1)-C(5)	191.3(11)	Ru(1)-C(6)	192.4(9)
Ru(2)-C(7)	193.4(9)	Ru(2)-C(8)	191.0(8)
Ru(2)-C(9)	191.1(10)	Ru(3)–C(10)	190.5(11)
Ru(3)-C(11)	194.4(10)	Ru(3)-C(12)	190.6(8)
O(1)-C(1)	114.7(14)	O(2)–C(2)	112.5(13)
O(3)-C(3)	112.7(11)	O(4)–C(4)	114.0(12)
O(5)-C(5)	113.5(13)	O(6)-C(6)	115.0(11)
O(7)–C(7)	113.1(12)	O(8)-C(8)	114.1(10)
O(9)-C(9)	113.6(13)	O(10)-C(10)	115.0(14)
O(11)-C(11)	112.6(12)	O(12)-C(12)	114.4(10)
Ru(1)-H(12)	192.7(103)	Ru(1)-H(13)	178.2(109)
Ru(2)-H(12)	175.1(83)	Ru(2)~H(23)	166.1(93)
Ru(3)-H(23)	186.2(97)	Ru(3)-H(13)	175.3(91)
Ru(1)-Rh-C(1)	98.7(2)	Ru(2)-Rh-C(1)	97.0(3)
Ru(3)-Rh-C(1)	158.1(3)	Ru(1)-Rh-C(2)	95.1(3)
Ru(2)-Rh-C(2)	156.2(3)	Ru(3)-Rh-C(2)	97.5(3)
Ru(1)-Rh-C(3)	157.3(3)	Ru(2)-Rh-C(3)	99.2(3)
Ru(3)-Rh-C(3)	95.0(3)	Rh-Ru(1)-C(4)	91.4(3)
Ru(2)-Ru(1)-C(4)	96.2(3)	Ru(3)-Ru(1)-C(4)	147.4(3)
Rh-Ru(1)-C(5)	91.9(3)	Ru(2)-Ru(1)-C(5)	148.4(2)
Ru(3)-Ru(1)-C(5)	97.9(3)	Rh-Ru(1)-C(6)	169.7(2)
Ru(2)-Ru(1)-C(6)	114.3(3)	Ru(3)-Ru(1)-C(6)	113.0(3)
Rh-Ru(2)-C(7)	172.2(3)	Ru(1)-Ru(2)-C(7)	116.5(3)
Ru(3)-Ru(2)-C(7)	115.0(3)	Rh-Ru(2)-C(8)	89.7(3)
Ru(1)-Ru(2)-C(8)	146.0(3)	Ru(3)-Ru(2)-C(8)	95.8(3)
Rh-Ru(1)-C(9)	90.2(3)	Ru(1)-Ru(2)-C(9)	96.0(3)
Ru(3)-Ru(2)-C(9)	146.8(3)	Rh-Ru(3)-C(10)	91.5(3)
Ru(1)-Ru(3)-C(10)	97.3(3)	Ru(2)-Ru(3)-C(10)	148.2(3)
Rh-Ru(3)-C(11)	167.9(3)	Ru(1)-Ru(3)-C(11)	111.0(2)
Ru(2)-Ru(3)-C(11)	113.5(3)	Rh-Ru(3)-C(12)	93.4(3)
Ru(1)-Ru(3)-C(12)	149.6(3)	Ru(2)-Ru(3)-C(12)	98.0(4)

graphite-monochromated Mo- K_{α} radiation, 4 494 unique reflections measured (5 < 2 θ < 55°, merging R = 0.0052 after absorption correction), giving 3 034 with $I > 3\sigma(I)$.

Structure analysis and refinement. The positions of the metal atoms were solved by the direct methods of the SHELXTL PLUS program package.¹³ These were anisotropically refined to R = 0.0390 and R' = 0.0390, $\sigma(w) = 0.0005$, together with isotropically refined hydrogen atoms. From the n.m.r. data the rhodium atom was deduced to occupy the same metal site as cobalt in the isomorphous crystal structure of $[Ru_3COH_3-(CO)_{12}]$.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters, and remaining bond angles.

Proton N.M.R. Spectroscopy.—The ¹H n.m.r. spectra were recorded on a Bruker AM-250 spectrometer using $CDCl_3$ as solvent. The chemical shifts are relative to $SiMe_4$.

Preparation of $[Ru_3RhH_3(CO)_{12}]$ —The ion $[Rh(CO)_4]^$ prepared from $[Rh_2(CO)_4Cl_2]$ (150 mg) {50% conversion into [Rh(CO)₄]⁻ was assumed} in tetrahydrofuran (thf) (25 cm³) was added dropwise to a hexane solution of $[Ru_3(CO)_{12}]$ {246 mg in ca. 150 cm³ hexane, which was warmed to 50 °C to dissolve all the $[Ru_3(CO)_{12}]$. A dark red solid precipitated during the addition. Hexane-thf solution (cooled to room temperature), which contained unreacted $[Ru_3(CO)_{12}]$, was removed by a syringe needle and the residue was treated with 85% H₃PO₄ (5 cm³). The crude product was then extracted by hexane-CH₂Cl₂ (3:1) and chromatographed on silica. The compound $[Ru_3RhH_3(CO)_{12}]$ was obtained as the first (yellow) band using hexane as eluant. Some $[Ru_2Rh_2H_2(CO)_{12}]$ was eluted as a reddish band. The product (ca. 100 mg) contained unidentified clusters which decomposed during the chromatographic separation. Compound (1) is relatively stable towards aerial oxidation. After separation, the ¹H n.m.r. spectrum of the product still showed a small singlet due to $[Ru_4H_4(CO)_{12}]$. Yield of (1) 9% (26 mg) with respect to $[Ru_3(CO)_{12}]$ (Found: C, 19.5; H, 0.4. Calc. for C₁₂H₃O₁₂RhRu₃: C, 19.3; H, 0.4%). I.r.(CH₂Cl₂): 2 075s, 2 060s, 2 052(sh), and 2 028s cm⁻¹.

Acknowledgements

The Academy of Finland is acknowledged for financial support.

References

- 1 T. A. Pakkanen, J. Pursiainen, T. Venäläinen, and T. T. Pakkanen, J. Organomet. Chem., 1989, 372, 129.
- 2 P. Michelin-Lausarot, G. A. Vaglio, and M. Valle, *Inorg. Chim. Acta*, 1979, **35**, 227.
- 3 P. Sundberg, B. F. G. Johnson, J. Lewis, and P. R. Raithby, J. Organomet. Chem., 1988, **354**, 131.
- 4 W. E. Lindsell, N. M. Walker, and A. S. Boyd, *J. Chem. Soc.*, *Dalton Trans.*, 1988, 675.
- 5 W. E. Lindsell, C. B. Knobler, and H. D. Kaesz, *J. Organomet. Chem.*, 1985, **296**, 209.
- 6 W. E. Lindsell, C. B. Knobler, and H. D. Kaesz, J. Chem. Soc., Chem. Commun., 1985, 1171.
- 7 W. L. Galdfelter, G. L. Geoffroy, and J. C. Calabrese, *Inorg. Chem.*, 1980, **19**, 2569.

- 9 P. Sundberg, B. Noren, B. F. G. Johnson, J. Lewis, and P. R. Raithby, J. Organomet. Chem., 1988, 353, 383.
- 10 K. Henrick, M. McPartlin, and J. Morris, Angew. Chem., 1986, 25, 853.
- 11 J. Pursiainen, T. A. Pakkanen, B. T. Heaton, C. Seregni, and R. G. Goodfellow, J. Chem. Soc., Dalton Trans., 1986, 681.
- 12 P. Chini and S. Martinengo, Inorg. Chim. Acta, 1969, 2, 21.
- 13 SHELXTL Plus, Release 3.4, Nicolet Co., Madison, Wisconsin, 1988.

Received 14th March 1989; Paper 9/01098J